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Abstract— This paper gives a systematic comparison between
the digital implementations of two current state-of-the-art
control techniques for Brushless DC Motors (BLDC) with
trapezoidal back-emf, namely Six-Step-Commutation (6SC)
and Modified Field Oriented Control (MFOC). Ideally, both
techniques are able to produce ripple-free torque. However, due
to several real-world factors, including discrete implementation
and requirements on fundamental-to-sampling frequency ratio,
this is not possible in reality. Based on continuous PI-controllers
and their discrete approximations, including a delayed version,
we compare the performance of 6SC and MFOC based on
the torque ripple and the mean torque error. Conclusively,
with the use of the continuous PI controllers and MFOC
it is indeed possible to generate smooth torque also over
high dynamic ranges, which so far was only clear for low
speeds. Still, for the discrete PI control case, ripple-free torque
is not achievable, though it is apparent that the generated
ripple is significantly lower than those of 6SC with continuous
or discrete implementation. For torque tracking, the error
increases disproportionally for 6SC compared to MFOC.

I. INTRODUCTION

Brushless DC motors (BLDC) and Surface Mount Per-
manent Magnet Synchronous Motors (PMSM) have been
incorporated to Robotics for many years now. Their ad-
vantage over brushed DC motors for durability and higher
power-to-weight density have made a rise to popularity in
many applications [1][2]. These two motors differ in their
manufacturing. The BLDC is characterized by a trapezoidal
shape back-emf phase voltage, while the PMSM is driven
towards a sinusoidal one [3]. Common BLDC applications
have focused on using Six-step Commutation (6SC) control
technique by energizing two phases of the motor to generate
torque while commutating the selected phases along the rotor
angle. This technique treats the BLDC as a DC motor over
each commutation step and is sufficient for most applications
focused on position or speed control. However, the current
and torque ripples generated at each commutation makes
it unreliable for smooth torque operation and subsequent
applications [4]. On the other hand, using Field Oriented
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Control (FOC) over PMSMs allows the implementation of
a rotating reference frame that enables control of the torque
with a good dynamic performance and no ripple, which is
very well suited for higher level applications within robotics
such as impedance control for dynamic compliant robots [5].
A problem comes to surface in highly compact and integrated
robotic applications such as hands or prostheses because
small enough PMSMs are not available at the market. BLDCs
should be the closest alternative, however, since a smooth
torque control is not yet guaranteed, most designs still use
DC- or low-power piezo-motors [6].

For an optimal solution, several methods have been pro-
posed [7]. One is a modified FOC (MFOC) [3] [8] [9],
where a new oscillating reference frame provides a direct
relation with the torque using a pseudo-park transformation
matrix [10]. Additional variations have been proposed based
or derived from the same principle [11] [12]. The mathe-
matical analysis has been properly developed, simulated and
implemented with good results. However, these simulations
were developed in continuous-domain and implemented at
low operational speeds and steady states, using BLDC motors
for continuous operation. By doing so, the fact that digital
systems are actually discrete can be neglected due to a
very high sampling-to-fundamental frequency ratio and the
continuous analysis retains its good behaviour. Be that as it
may, these approximations are not feasible within motors that
require a higher dynamic operational speed range as within
robotics. At higher speeds, the electrical frequency of the cur-
rents and voltages increase, consequently the fundamental-
to-sampling frequency ratio of the system decreases, and
inaccuracies between the continuous domain simulation and
discrete implementation are generated.

Some of these effects were simulated in [13], where the
torques of motors operating at high speeds using 6SC and
FOC were compared. A decrease over the mean torque
and an increase in torque ripple is highly noted in both
techniques. Although an overall architecture of the simulated
system is presented and a discrete architecture of the con-
trollers is inferred, no additional information on the discrete
nature, mathematical model of the controllers nor the tuned
parameters are presented.

The specific contributions of this work addresses this
missing analysis by i.) the quantitative comparison of MFOC
against 6SC in terms of torque smoothness for both con-
tinuous and discrete implementations and ii.) deriving the
maximum control gains of state-of-the-art discrete PI control
based on the understanding of the minimum fundamental-to-
sampling ratio required.



The standard modeling and continuous control of a BLDC
using both techniques are summarized in Section II. In Sec-
tion III, the tuning of the continuous controllers is calculated
over the system parameters, and two discrete controllers
(with and without computational delay) are calculated using
the Tustin approximation. Simulation results are evaluated in
Section IV. Finally, Section V gives our conclusions.

II. MODELING AND CONTROL BACKGROUND

Since in previous works on MFOC and 6SC [3] [8] [9]
various incomparable variants were implemented - some of
them with certain simplifications - we summarize the mod-
eling and control such that a common and consistent basis
serves our analysis and argumentation and reproducibility of
our results.

A. Standard BLDC Motor Modeling

The standard electrical model of the BLDC motor in the
stationary abc-reference frame is given by [10]

d

dt

 iaib
ic

= −R
L

 iaib
ic

+
1

L

 vavb
vc

−
 ea(θe)
eb(θe)
ec(θe)

, (1)

where ia, ib and ic are the phase currents, va, vb and vc are
the input phase to neutral voltages, R and L are the stator
phase resistance and inductance, θe is the electrical angle of
the rotor stated as

θe = npθ,

where np is the number of pole pairs and θ is the rotor angle.
ea, eb and ec are the back-emf voltages given by ea (θe)

eb (θe)
ec (θe)

 = Kenpω

 f (θe)
f
(
θe − 2π

3

)
f
(
θe + 2π

3

)
 , (2)

where Ke is the magnetic flux linkage constant, ω is the
mechanical speed of the motor, and f(θe) is the back-emf
normalized profile given by [9]

f(θe) =
12

π2

∞∑
n=1

(
cos(nπ)− 1

n2

)
sin
(
n
π

6

)
sin(nθe) (3)

for a trapezoidal shape. By reducing the expression to the
fundamental component, n = 1, we get the sinusoidal back-
emf of a PMSM as seen in Fig. 1(a). Additionally, the
produced electromagnetic torque, τe, is defined as [10]

τe =
1

ω

 ea (θe)
eb (θe)
ec (θe)

T  ia
ib
ic

 , (4)

and interacts with the dynamic model of the motor via

d

dt

[
θ
ω

]
=

[
0 1
0 −BJ

] [
θ
ω

]
+

[
0
1
J

]
(τe − τl) , (5)

where B, J and τl are the friction constant, moment of
inertia and load torque, respectively.
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Fig. 1. Six step Commutation control of a BLDC motor over one electrical
rotation of phases a (red), b (blue), c (green). (a) Trapezoidal (solid) and
sinusoidal (dotted) back-emf profiles in abc-frame. (b) Hall sensors. (c) Ideal
(solid) and real (dotted) rectangular current in abc-frame. (d) Torque with
ideal (solid) and real (dotted) rectangular currents.

B. Six Step Commutation

This method bases on the commutation of two phases
when its corresponding f(θe) has a constant value. Com-
mercially available motors provide embedded Hall sensors in
order to detect the commutation steps as seen in Fig. 1(b). For
instance, combining (2) with model (1) when θe ∈ [π6 ,

3π
6 ],

the system transfer function simplifies to

Iba(s) = H(s) (Vba(s)− 2KenpΩ(s)) ,

H(s) =
1

2L

1

s+ R
L

,
(6)

where Iba, Vba, Ω and H are the Laplace transforms of
the current passing from phases b to a, the voltage between
phases b to a, the motor speed, and the transfer function of
the motor inductor dynamics, respectively. By doing so, the
phase currents ideally become rectangular-shaped, c.f. Fig.
1(c), and produce a ripple free τe, see Fig. 1(d), independent
of θe that could be defined by

τe = 2Kenpiba. (7)

To establish a control framework for τe, a proportional
integral (PI) current controller with transfer function

GPI(s) =
VPI(s)

I∗ba(s)− Iba(s)
= Kp

(s+ Ti)

s
(8)

is used, where Kp and Ti are the proportional gain and
integral time constant, respectively. A Ti = R/L is selected



to cancel the pole in (6), and a feed-forward voltage

Vff (s) = 2KenpΩ(s) (9)

is used to compensate for the back-emf voltage. The set-
point variables are determined with the ∗ symbol. We thus
obtain a closed-loop first order system

Hcl(s) =
Te(s)

T ∗e (s)
=
Iba(s)

I∗ba(s)
=

Kp

Leqs+Kp
, (10)

where Te is the Laplace transfom of τe and Leq = 2L. As a
first order system, the bandwidth BW and settling time ts,
with a 1% error, are simply given by

BW =
Kp

2πLeq
, ts =

Leq
Kp

ln

(
1

0.01

)
(11)

and can thus be tuned up by Kp.

C. Modified Field Oriented Control

The principle of FOC is based on the change of the
system vectors X = v, i, f or e from the static abc-reference
frame Xabc as given in (1) to a rotating dq-reference frame
representation Xdq0 [9] via

Xdq0 = Tp(θe)TcXabc, (12)

Xabc = T−1c T−1p (θe)Xdq0, (13)

Tc =
2

3

 1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

1
2

1
2

1
2

 , (14)

Tp(θe) =

 cos θe sin θe 0
− sin θe cos θe 0

0 0 1

 , (15)

where Tc and Tp(θe) are the Clarke and Park trans-
formation matrixes. As seen in Fig. 2(a), the sinusoidal
back-emf profiles in the new reference frame fdq0(θe) =

[fd(θe), fq(θe), f0(θe)]
T are simplified to [0, 1, 0]

T . This
allows us to reduce the number of control variables, and
simplify the representation of the back-emf. Moreover, by
applying (13) to (4), a control reference of τe can be
provided without θe dependencies with the new reference
frame variables as

τe =
1

ω

T−1c T−1p

 0
1
0

T T−1c T−1p

 idiq
0


=

3

2
Kenpiq.

(16)

Note that for a motor with trapezoidal back-emf, the torque
reduces to

τe =
3

2
Kenp(fd(θe)id + fq(θe)iq),

where a dependency over θe is still present due to the
oscillating values of fq and fd, thus making FOC insufficient
for controlling τe over iq only, see Fig. 2(b). To compensate
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Fig. 2. (a) Trapezoidal (solid) and sinusoidal (dotted) back-emf in rotating
dq-frame. (b) Output torque using MFOC (solid) and FOC (dotted) with
trapezoidal back-emf and id = 0 and iq = 1.(c) Parameters µ(θe) and
k(θe) (d) Trapezoidal back-emf in oscillating dq∼-frame.

for this, MFOC defines a new Pseudo-Park transformation
matrix

T̃p(θe)=
1

k(θe)

 cos(θe+µ(θe)) sin(θe+µ(θe)) 0
− sin(θe+µ(θe)) cos(θe+µ(θe)) 0

0 0 1

 (17)

where µ and k are the transformation parameters, see
Fig. 2(c), defined as

µ(θe)=− tan−1
fd(θe)

fq(θe)
, k(θe)=

1√
f2q (θe) + f2d (θe)

. (18)

Consequently, we now have a new reference frame X̃dq0

given by

X̃dq0 = T̃p(θe)TcXabc (19)

Xabc = T−1c T̃−1p (θe)X̃dq0. (20)

The back-emf in the new frame is given as f̃dq0(θe) =

[0, 1
k2(θe)

, f̃0(θe)]
T

as seen in Fig. 2(d). As a result, τe is
now expressed as

τe =
3

2
Kenpk

2(θe)

 0
1

k2(θe)

f̃0(θe)

T  ĩd
ĩq
0


=

3

2
Kenpĩq.

(21)



Applying (19) and (20) to (1), gives us

d

dt

 ĩdĩq
0

 =
1

L

 ṽdṽq
ṽ0

− Kenpω

L

 0
1

k2(θe)

f̃0(θe)

−
 R

L + k′(θe) −µ′(θe) 0
µ′(θe)

R
L + k′(θe) 0

0 0 R
L + k′(θe)

 ĩdĩq
0


(22)

k′(θe) =
npω

k(θe)

dk(θe)

dθe
, µ′(θe) = npω

(
dµ(θe)

dθe
+1

)
(23)

This is a new reference frame model, where ṽd, ṽq , ṽ0, ĩd and
ĩq are the pseudo- direct, quadrature, and neutral voltages,
and pseudo- direct and quadrature currents, respectively.

With the use of two PI current controllers, one for ĩq(t)
and one for ĩd(t), with transfer function (8) and new decou-
pling feed-forward voltages given by[

ṽffd(t)
ṽffq(t)

]
= L

[
k′(θe) −µ′(θe)
µ′(θe) k′(θe)

] [
ĩd(t)

ĩq(t)

]
+LnpKeω

[
0
1

k2(θe)

] (24)

to eliminate coupling between ĩq(t) and ĩd(t), and the back-
emf voltage effects, we obtain two independent closed-loop
first order systems similar to (10),

Hcl(s) =
Ĩq(s)

Ĩ∗q (s)
=
Ĩd(s)

Ĩ∗d (s)
=

Kp

Leqs+Kp
, (25)

where Leq = L. By setting ĩ∗d = 0, we assert controllability
of τe through ĩ∗q as defined in (21).

III. CONTROLLER SETUP AND METRICS

In order to establish a proper comparison between both
techniques, three architecture types are taken into account:
the continuous controllers as defined in the previous sec-
tion, their discrete approximation, and a delayed discrete
approximation. The discrete controllers will help us analyze
the effects of discretization with and without delay at high
speeds. Therefore, several Kp gains must be tuned up to
deliver the maximum performance of each controller. For
this, the desired operational range of the motor and system
capabilities must be taken into consideration.

A. Operational Range of the Motor

The operational range of the motor can be obtained from
the motor and system parameters. The maximum speed and
torque are given by:

ωmax =
vdc − 2Rin

2Kenp

τmax
e = 2Kenpin,

(26)

where vdc denotes the DC voltage of the system and in the
motor nominal current1.

1If the manufacturer defines lower values due to mechanical, thermal or
safety constrains, these should be considered instead.
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B. Upper bound Kp

1) Continuous Control: Depending on the chosen control
techniques Kp has two different upper bounds:
• Six step Commutation: In order to avoid a controller

output saturation (vPI > vdc) that would affect the lin-
ear performance of the closed loop system, a maximum
Kp is defined given that the maximum controller input
is set to in.

Kp ≤ Kmax
6SC =

vdc
in
, (27)

• Modified Field Oriented Control: In this technique, the
output saturation should not occur in vabc, after applying
(20) to the controller outputs, thus a new maximum Kp

is defined as

Kp ≤ Kmax
MFOC =

√
3

3

vdc
in
. (28)

2) Discrete control: In the discrete scenario, we first
have to define the fundamental-to-sampling ratio as follows.
By analyzing the spectrum of the ideal iabc and using the
Nyquist criteria, we set a minimum sampling frequency,
denoted by fmin

s , to acquire the harmonics with more than
1% (7th harmonic), see Fig. 3(a), as

fmin
s = 7(2fe) = 14fe,

where fe is the fundamental electrical frequency given by

fe =
1

2π
npω. (29)

However, a higher fmin
s is needed for the controller to

generate the needed values of k and µ to achieve the X̃dq0

transformation and the required feed-forward terms k′, µ′ and
1
k2 , given that their harmonic components have a significant
amplitude around the 12th and 18th harmonics too, as seen in



Fig. 3(b). Therefore, a more appropriate minimum sampling-
to fundamental ratio is defined as

fe
fmin
s

=
1

36
. (30)

Since the sampling frequency of an implemented system, fs,
is limited to the capabilities of the used microcontroller, a
new ωmax would need to be defined using (29) and (30).
• Ideal Discrete Controller: Using the Laplace to Z- trans-

formation of a Zero-Order-Hold (ZOH) system [14], we
discretize (6) for 6SC and MFOC and obtain

H(z) = (1− z−1)Z
{
H(s)

s

}
Ts

=
1

Req

(
1− e−R

LTs

z − e−R
LTs

)
,

(31)

where Ts = 1/fs and Req = 2R for 6SC and Req = R
for MFOC. The controller is then discretized using the
bi-linear transformation to

GPI(z) = Kp

(
1 +

R

L

Ts
2

(
z + 1

z − 1

))
GPI(z) = K ′p

(
z − z0
z − 1

)
K ′p = Kp

(
R

L

Ts
2

+ 1

)
, z0 =

1− R
L
Ts

2

1 + R
L
Ts

2

(32)

The gain K ′p and pole z0 of the controller can be
approximated using the inverse bi-linear transformation,
giving us the final form:

GPI(z) = Kp

(
R
LTs

1− e−R
LTs

)(
z − e−R

LTs

z − 1

)
(33)

Combining (31) and (32) results in the closed loop
system

Hcl(z) =

Kp

Leq
Ts

z − 1 +
Kp

Leq
Ts
. (34)

By maintaining the pole of the system within the unitary
circle and positive for a damped response, we obtain the
limit for Kp to be

Kp ≤ Kζi =
Leq
Ts

= Leqfs. (35)

• Delayed Discrete Controller: The previously defined
discrete model has not yet taken into account the delay
of the controller. Thus a slightly extended controller

GdPI(z) = z−1GPI(z) (36)

is introduced, resulting in the closed loop transfer
function

Hd
cl(z) =

Kp

Leq
Ts

z2 − z +
Kp

Leq
Ts
. (37)

TABLE I
SIMULATION PARAMETERS

Technique
Parameters 6SC MFOC Units
DC Voltage, vdc 24 V
Continuous Kp 36.36 20.99 V/A
Sampling Frequency, fs 50 kHz
Discrete ideal Kp 36.36 20.99 V/A
Discrete delayed Kp 11.05 5.53 V/A
Nominal Voltage Un 12 V
Rated current in 0.66 A
Rated torque τe 10 mNm
Phase Resistance R 3.48 Ω
Phase Inductance L 442 µH
Back-emf constant Ke 0.89 mV/min−1

Rotor Inertia J 3.3 gcm2

Maximum speed ωmax 10000 min−1

Number of pole pairs, np 7

As a second order system, we set a new limit on Kp

to obtain a critically damped response and avoid ripple
generation as

Kp ≤ Kζd =
Leq
4Ts

=
Leq
4
fs. (38)

Even though Kζi and Kζd may increase with higher sam-
pling rates, these values cannot exceed Kmax

6SC nor Kmax
MFOC,

depending on the selected technique, as it would generate a
voltage saturation.

C. Metrics

For quantifying the mean torque error and torque ripple
of aforementioned controllers, following torque metrics are
introduced.

ēτ (%) = 100| τ̄e
τ∗e
− 1|, τr(%) = 100(

τσ
τ∗e

), (39)

where τ̄e and τσ are the mean and standard deviation of τe
over one electrical period, respectively.

IV. SIMULATION EXPERIMENTS

A. Simulation Settings

A simulation experiment for performance analysis is con-
ducted for the current controllers for nominal current step
inputs (i∗ = in for 6SC and ĩ∗q = in for MFOC). The simula-
tion environment is MATLAB/Simulink with a Runge-Kutta
solver at fixed-step of 0.01µs. The Motor 2214S012BXTR
(Faulhaber) parameters can be found in Tab. I and are
used for evaluating (1) - (5) in double float precision. The
trapezoidal back-emf profile f(θe) is calculated until the
19th harmonic given that the amplitudes of higher harmonics
are negligible. The motor controllers are simulated using
the parameters from Tab. I. Single-float precision was used
to emulate the capabilities of commercially available small
microcontrollers (µC) with floating point units (FPU). The
functions sin(θe) and cos(θe), and parameters derived from
f(θe) such as µ, k, dµ/dθe and dk/dθe were calculated and
converted to 16bit precision look-up tables (LUTs) with 14bit
addressing. This is done to emulate µC implementation and
limited memory resources. Controller output voltages were
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Fig. 4. Simulation results of one electrical rotation at different steady state speeds: 100 rad/s (red), 500 rad/s (blue) and 1000 rad/s (green). With a
continuous controller Gc(s): (a) ia and (b) τe using 6SC, and (c) ia and (d) τe using MFOC. With a discrete controller Gc(z): (e) ia and (f) τe using
6SC, and (g) ia and (h) τe using MFOC. With a delayed discrete controller Gd

c (z): (i) ia and (j) τe using 6SC, and (k) ia and (l) τe using MFOC.

simulated as analog signals and not as Pulse Width modu-
lated (PWM) signals to prevent additional ripple generation
and extended analysis of its non linearity.

B. Simulation results

Figure 4 shows an electrical cycle of ia and τe at 100,
500 and 1000 rad/s speeds, equivalent to the 9.5%, 47.8%
and 95.5% of the maximum speed, using 6SC and MFOC
techniques with a continuous, discrete or delayed discrete
controller. We first see in (a) 6SC with the continuous con-
troller, where ia follows the rectangular shaped ideal profile,
however, it is limited by the system response and phase
commutations. At higher speeds, the current deviates more
from the desired reference. These limitations translate in (b)
to a fixed τe ripple valley around the commutation angles,
which increases and becomes wider at higher speeds. On
the other hand, MFOC shows in (c) that ia retains the same
shape at all speeds using the continuous controller, and τe
is shown without ripples in (d). Analyzing the behaviour of
6SC with the discrete controller in (e), we notice that similar
distortions occur in ia as with the continuous controller,
which also translate to τe ripples in (f). Contrarily, MFOC
with the discrete controller start to show in (g) slightly
more disturbances in the ia along the speed increments that
translate into quite noticeable τe ripples at the mid and high
speeds that were not present before. Later on, we see in (i)
that 6SC is affected even more with the delayed discrete
controller, as the commutation of ia occurs significantly out
of phase as speed increases. This shows in (j) significantly
more ripple. Finally, we observe in (k) the behaviour of
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Fig. 5. Evolution of (a) mean torque error and (b) torque ripple over
motor speed for 6SC and MFOC techniques using a continuous, discrete
and delayed discrete controller.



ia getting significantly distorted at higher speeds, which
translates back to an increase in τe ripples in (l), occurring
even at low speed.

A quantitative comparison using τr, and ēτ is further
detailed in Fig. 5. We can see in (a) that ēτ remains close
to zero in all instances of MFOC, while it increases with
increasing speed in 6SC. On the other hand, the increase
of τr along the speed is clear in (b) for MFOC with both
discrete controllers, and 6SC with all of them. This happens
because the fundamental-to-sampling ratio of the system
diminishes with the increase of speed. Regardless of this,
MFOC has lower τr than 6SC with any controller, even with
the delayed discrete version, which is the one representing
an implementable version of the digital controller.

V. CONCLUSION

In this paper, it has been confirmed that MFOC can
produce a smooth torque output using a continuous controller
over the full operational speed range of a BLDC motor. When
a delayed discrete controller is used, the resulting mean
torque is still maintained but a torque ripple is introduced due
to the limitations of the fundamental-to sampling ratio of the
system. However, these ripples are significantly lower than
the ones produced using 6SC. Since in reality a compromise
between maximum speed, sampling frequency and torque
ripple is implemented, the ideal continuous controller results
cannot be achieved. Still, the well performing ideal discrete
MFOC controller could still be asserted by applying standard
delay compensation methods.
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